189 research outputs found

    Modeling of SAR signatures of shallow water ocean topography

    Get PDF
    A hydrodynamic/electromagnetic model was developed to explain and quantify the relationship between the SEASAT synthetic aperture radar (SAR) observed signatures and the bottom topography of the ocean in the English Channel region of the North Sea. The model uses environmental data and radar system parameters as inputs and predicts SAR-observed backscatter changes over topographic changes in the ocean floor. The model results compare favorably with the actual SEASAT SAR observed backscatter values. The developed model is valid for only relatively shallow water areas (i.e., less than 50 meters in depth) and suggests that for bottom features to be visible on SAR imagery, a moderate to high velocity current and a moderate wind must be present

    Further SEASAT SAR coastal ocean wave analysis

    Get PDF
    Analysis techniques used to exploit SEASAT synthetic aperture radar (SAR) data of gravity waves are discussed and the SEASAT SAR's ability to monitor large scale variations in gravity wave fields in both deep and shallow water is evaluated. The SAR analysis techniques investigated included motion compensation adjustments and the semicausal model for spectral analysis of SAR wave data. It was determined that spectra generated from fast Fourier transform analysis (FFT) of SAR wave data were not significantly altered when either range telerotation adjustments or azimuth focus shifts were used during processing of the SAR signal histories, indicating that SEASAT imagery of gravity waves is not significantly improved or degraded by motion compensation adjustments. Evaluation of the semicausal (SC) model using SEASAT SAR data from Rev. 974 indicates that the SC spectral estimates were not significantly better than the FFT results

    Quantifying burned area for North American forests: Implications for direct reduction of carbon stocks

    Get PDF
    A synthesis was carried out to analyze information available to quantify fire activity and burned area across North America, including a comparison of different data sources and an assessment of how variations in burned area estimate impact carbon emissions from fires. Data sets maintained by fire management agencies provide the longest record of burned area information. Canada and Alaska have the most well developed data sets consisting of the perimeters of large fires (\u3e200 ha) going back to 1959 and 1950, respectively. A similar data set back to 1980 exists for the Conterminous U.S., but contains data only from federal land management agencies. During the early half of the 20th century, average burned area across North America ranged between 10 and 20 × 106 ha yr−1, largely because of frequent surface fires in the southeastern U.S. Over the past two decades, an average of 5 × 106 ha yr−1 has burned. Moderate-resolution (500–1000 m) satellite burned area products information products appear to either underestimate burned area (GFED3 and MCD45A1) or significantly overestimate burned area (L3JRC and GLOBCARBON). Of all the satellite data products, the GFED3 data set provides the most consistent source of burned area when compared to fire management data. Because they do not suitably reflect actual fire activity, the L3JRC and GLOBCARBON burned area data sets are not suitable for use in carbon cycle studies in North America. The MCD45A1 data set appears to map a higher fraction of burned area in low biomass areas compared to the GFED3 data set

    Soil methane sink capacity response to a long-term wildfire chronosequence in Northern Sweden

    Get PDF
    Boreal forests occupy nearly one fifth of the terrestrial land surface and are recognised as globally important regulators of carbon (C) cycling and greenhouse gas emissions. Carbon sequestration processes in these forests include assimilation of CO2 into biomass and subsequently into soil organic matter, and soil microbial oxidation of methane (CH4). In this study we explored how ecosystem retrogression, which drives vegetation change, regulates the important process of soil CH4 oxidation in boreal forests. We measured soil CH4 oxidation processes on a group of 30 forested islands in northern Sweden differing greatly in fire history, and collectively representing a retrogressive chronosequence, spanning 5000 years. Across these islands the build-up of soil organic matter was observed to increase with time since fire disturbance, with a significant correlation between greater humus depth and increased net soil CH4 oxidation rates. We suggest that this increase in net CH4 oxidation rates, in the absence of disturbance, results as deeper humus stores accumulate and provide niches for methanotrophs to thrive. By using this gradient we have discovered important regulatory controls on the stability of soil CH4 oxidation processes that could not have not been explored through shorter-term experiments. Our findings indicate that in the absence of human interventions such as fire suppression, and with increased wildfire frequency, the globally important boreal CH4 sink could be diminished

    Observations and assessment of forest carbon dynamics following disturbance in North America

    Get PDF
    Disturbance processes of various types substantially modify ecosystem carbon dynamics both temporally and spatially, and constitute a fundamental part of larger landscape-level dynamics. Forests typically lose carbon for several years to several decades following severe disturbance, but our understanding of the duration and dynamics of post-disturbance forest carbon fluxes remains limited. Here we capitalize on a recent North American Carbon Program disturbance synthesis to discuss techniques and future work needed to better understand carbon dynamics after forest disturbance. Specifically, this paper addresses three topics: (1) the history, spatial distribution, and characteristics of different types of disturbance (in particular fire, insects, and harvest) in North America; (2) the integrated measurements and experimental designs required to quantify forest carbon dynamics in the years and decades after disturbance, as presented in a series of case studies; and (3) a synthesis of the greatest uncertainties spanning these studies, as well as the utility of multiple types of observations (independent but mutually constraining data) in understanding their dynamics. The case studies—in the southeast U.S., central boreal Canada, U.S. Rocky Mountains, and Pacific Northwest—explore how different measurements can be used to constrain and understand carbon dynamics in regrowing forests, with the most important measurements summarized for each disturbance type. We identify disturbance severity and history as key but highly uncertain factors driving post-disturbance carbon source-sink dynamics across all disturbance types. We suggest that imaginative, integrative analyses using multiple lines of evidence, increased measurement capabilities, shared models and online data sets, and innovative numerical algorithms hold promise for improved understanding and prediction of carbon dynamics in disturbance-prone forests

    The role of historical fire disturbance in the carbon dynamics of the pan-boreal region : a process-based analysis

    Get PDF
    Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): G02029, doi:10.1029/2006JG000380.Wildfire is a common occurrence in ecosystems of northern high latitudes, and changes in the fire regime of this region have consequences for carbon feedbacks to the climate system. To improve our understanding of how wildfire influences carbon dynamics of this region, we used the process-based Terrestrial Ecosystem Model to simulate fire emissions and changes in carbon storage north of 45°N from the start of spatially explicit historically recorded fire records in the twentieth century through 2002, and evaluated the role of fire in the carbon dynamics of the region within the context of ecosystem responses to changes in atmospheric CO2 concentration and climate. Our analysis indicates that fire plays an important role in interannual and decadal scale variation of source/sink relationships of northern terrestrial ecosystems and also suggests that atmospheric CO2 may be important to consider in addition to changes in climate and fire disturbance. There are substantial uncertainties in the effects of fire on carbon storage in our simulations. These uncertainties are associated with sparse fire data for northern Eurasia, uncertainty in estimating carbon consumption, and difficulty in verifying assumptions about the representation of fires that occurred prior to the start of the historical fire record. To improve the ability to better predict how fire will influence carbon storage of this region in the future, new analyses of the retrospective role of fire in the carbon dynamics of northern high latitudes should address these uncertainties.Funding for this study was provided by grants from the National Science Foundation Biocomplexity Program (ATM-0120468) and Office of Polar Programs (OPP-0531047 and OPP- 0327664); the National Aeronautics and Space Administration Land Cover Land Use Change Program (NAF-11142) and North America Carbon Program (NNG05GD25G); the Bonanza Creek LTER (Long-Term Ecological Research) Program (funded jointly by NSF grant DEB-0423442 and USDA Forest Service, Pacific Northwest Research Station grant PNW01- JV11261952-231); and the U.S. Geological Survey

    Biomass burning fuel consumption rates: a field measurement database

    Get PDF
    Landscape fires show large variability in the amount of biomass or fuel consumed per unit area burned. Fuel consumption (FC) depends on the biomass available to burn and the fraction of the biomass that is actually combusted, and can be combined with estimates of area burned to assess emissions. While burned area can be detected from space and estimates are becoming more reliable due to improved algorithms and sensors, FC is usually modeled or taken selectively from the literature. We compiled the peerreviewed literature on FC for various biomes and fuel categories to understand FC and its variability better, and to provide a database that can be used to constrain biogeochemical models with fire modules. We compiled in total 77 studies covering 11 biomes including savanna (15 studies, average FC of 4.6 t DM (dry matter) ha 1 with a standard deviation of 2.2),tropical forest (n = 19, FC = 126 +/- 77),temperate forest (n = 12, FC = 58 +/- 72),boreal forest (n = 16, FC = 35 +/- 24),pasture (n = 4, FC = 28 +/- 9.3),shifting cultivation (n = 2, FC = 23, with a range of 4.0-43),crop residue (n = 4, FC = 6.5 +/- 9.0),chaparral (n = 3, FC = 27 +/- 19),tropical peatland (n = 4, FC = 314 +/- 196),boreal peatland (n = 2, FC = 42 [42-43]),and tundra (n = 1, FC = 40). Within biomes the regional variability in the number of measurements was sometimes large, with e. g. only three measurement locations in boreal Russia and 35 sites in North America. Substantial regional differences in FC were found within the defined biomes: for example, FC of temperate pine forests in the USA was 37% lower than Australian forests dominated by eucalypt trees. Besides showing the differences between biomes, FC estimates were also grouped into different fuel classes. Our results highlight the large variability in FC, not only between biomes but also within biomes and fuel classes. This implies that substantial uncertainties are associated with using biome-averaged values to represent FC for whole biomes. Comparing the compiled FC values with co-located Global Fire Emissions Database version 3 (GFED3) FC indicates that modeling studies that aim to represent variability in FC also within biomes, still require improvements as they have difficulty in representing the dynamics governing FC
    • …
    corecore